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§2.5 CONTINUUM MECHANICS (FLUIDS)

Let us consider a fluid medium and use Cartesian tensors to derive the mathematical equations that
describe how a fluid behaves. A fluid continuum, like a solid continuum, is characterized by equations
describing:

1. Conservation of linear momentum

Tijj + 0bi = 0v; (2.5.1)

2. Conservation of angular momentum o;; = 0;.

3. Conservation of mass (continuity equation)

do 0o ov; Do o
BN +8xivl+98xi =0 or D1 +oV-V =0. (2.5.2)

In the above equations v;,7 = 1, 2, 3 is a velocity field, g is the density of the fluid, o;; is the stress tensor
and b; is an external force per unit mass. In the cgs system of units of measurement, the above quantities

have dimensions
[05] = cm/secz, [b;] = dynes/g, [oi;] = dyne/ch, [o] = g/cmg. (2.5.3)

The displacement field u;,7 = 1,2,3 can be represented in terms of the velocity field v;,i = 1,2, 3, by

the relation .
U; = / V; dt. (254)
0

The strain tensor components of the medium can then be represented in terms of the velocity field as

1 tq t
eij = 5 (uij +uji) = / —(vi; +vj,:)dt = / D;; dt, (2.5.5)
2 0 2 o
where
1
Dij = i(vi,j +vj,4) (2.5.6)

is called the rate of deformation tensor , velocity strain tensor, or rate of strain tensor.

Note the difference in the equations describing a solid continuum compared with those for a fluid
continuum. In describing a solid continuum we were primarily interested in calculating the displacement
field u;,7 = 1,2,3 when the continuum was subjected to external forces. In describing a fluid medium, we
calculate the velocity field v;,7 = 1,2,3 when the continuum is subjected to external forces. We therefore
replace the strain tensor relations by the velocity strain tensor relations in all future considerations concerning

the study of fluid motion.

Constitutive Equations for Fluids

In addition to the above basic equations, we will need a set of constitutive equations which describe the
material properties of the fluid. Toward this purpose consider an arbitrary point within the fluid medium
and pass an imaginary plane through the point. The orientation of the plane is determined by a unit normal
n; , 1 = 1,2,3 to the planar surface. For a fluid at rest we wish to determine the stress vector tg") acting

) in terms of the stress

on the plane element passing through the selected point P. We desire to express tl(.n
tensor ;5. The superscript (n) on the stress vector is to remind you that the stress acting on the planar

element depends upon the orientation of the plane through the point.



We make the assumption that tgn) is colinear with the normal vector to the surface passing through
the selected point. It is also assumed that for fluid elements at rest, there are no shear forces acting on the
planar element through an arbitrary point and therefore the stress tensor o;; should be independent of the
orientation of the plane. That is, we desire for the stress vector o;; to be an isotropic tensor. This requires
045 to have a specific form. To find this specific form we let 0;; denote the stress components in a general
coordinate system z°, i = 1,2,3 and let 0i; denote the components of stress in a barred coordinate system
7'.i=1,2,3. Since 0;; is a tensor, it must satisfy the transformation law

_ ozt Ox’ o
Omn = U”af—mﬁ’ i,j,m,n=1,23. (2.5.7)
We desire for the stress tensor o;; to be an invariant under an arbitrary rotation of axes. Consider

therefore the special coordinate transformations illustrated in the figures 2.5-1(a) and (b).

x3
=3
X —2
/1
<! x2

x'= x2

%2— — x!
x>= x3

(b)

Figure 2.5-1. Coordinate transformations due to rotations

For the transformation equations given in figure 2.5-1(a), the stress tensor in the barred system of

coordinates is

011 = 022 T21 = 032 031 = 012
T12 = 023 022 = 033 032 = 013 (2.5.8)
013 = 021 O23 = 031 033 = 011

If 0;; is to be isotropic, we desire that 11 = 011, T22 = 022 and T33 = o33. If the equations (2.5.8) are
to produce these results, we require that o117, 022 and o33 must be equal. We denote these common values
by (—p). In particular, the equations (2.5.8) show that if 511 = 011, T22 = 022 and G335 = 033, then we must
require that o117 = 099 = 033 = —p. If 12 = 012 and T23 = 093, then we also require that o152 = 093 = 031.
We note that if 713 = 013 and T332 = 032, then we require that o917 = 032 = 013. If the equations (2.5.7) are

expanded using the transformation given in figure 2.5-1(b), we obtain the additional requirements that

011 = 022 T21 = —012 T31 = 032
012 = —091 T22 = 011 032 = —031 (2.5.9)

013 = 023 T23 = —013 033 = 033.
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Analysis of these equations implies that if o;; is to be isotropic, then 721 = 021 = —012 = —021
or 091 = 0 which implies 0192 = 093 = 031 = 091 = 032 = 013 = 0. (2.5.10)
The above analysis demonstrates that if the stress tensor o;; is to be isotropic, it must have the form
05 = —pdij. (2.5.11)

Use the traction condition (2.3.11), and express the stress vector as

8 = oyyn; = —pn;. (2.5.12)
This equation is interpreted as representing the stress vector at a point on a surface with outward unit
normal n;, where p is the pressure (hydrostatic pressure) stress magnitude assumed to be positive. The
negative sign in equation (2.5.12) denotes a compressive stress.

Imagine a submerged object in a fluid medium. We further imagine the object to be covered with unit
normal vectors emanating from each point on its surface. The equation (2.5.12) shows that the hydrostatic
pressure always acts on the object in a compressive manner. A force results from the stress vector acting on
the object. The direction of the force is opposite to the direction of the unit outward normal vectors. It is
a compressive force at each point on the surface of the object.

The above considerations were for a fluid at rest (hydrostatics). For a fluid in motion (hydrodynamics)
a different set of assumptions must be made. Hydrodynamical experiments show that the shear stress

components are not zero and so we assume a stress tensor having the form
Oij = _p(sl] + Tij, i,7=1,2,3, (2513)

where 7;; is called the viscous stress tensor. Note that all real fluids are both viscous and compressible.

Definition: (Viscous/inviscid fluid) If the viscous stress ten-
sor 7;; is zero for all 4, j, then the fluid is called an inviscid, non-
viscous, ideal or perfect fluid. The fluid is called viscous when 7;;

is different from zero.

In these notes it is assumed that the equation (2.5.13) represents the basic form for constitutive equations

describing fluid motion.



Figure 2.5-2. Viscosity experiment.

Viscosity

Most fluids are characterized by the fact that they cannot resist shearing stresses. That is, if you put a
shearing stress on the fluid, the fluid gives way and flows. Consider the experiment illustrated in the figure
2.5-2 which illustrates a fluid moving between two parallel plane surfaces. Let S denote the distance between
the two planes. Now keep the lower surface fixed or stationary and move the upper surface parallel to the
lower surface with a constant velocity Vo. If you measure the force F' required to maintain the constant
velocity of the upper surface, you discover that the force F' varies directly as the area A of the surface and

the ratio Vp/S. This is expressed in the form

F_ %

1= g (2.5.14)
The constant p* is a proportionality constant called the coefficient of viscosity. The viscosity usually depends
upon temperature, but throughout our discussions we will assume the temperature is constant. A dimensional
analysis of the equation (2.5.14) implies that the basic dimension of the viscosity is [u*] = ML~'T~!. For
example, [p*] = gm/(cm sec) in the cgs system of units. The viscosity is usually measured in units of
centipoise where one centipoise represents one-hundredth of a poise, where the unit of 1 poise= 1 gram

per centimeter per second. The result of the above experiment shows that the stress is proportional to the

change in velocity with change in distance or gradient of the velocity.

Linear Viscous Fluids

The above experiment with viscosity suggest that the viscous stress tensor 7;; is dependent upon both
the gradient of the fluid velocity and the density of the fluid.
In Cartesian coordinates, the simplest model suggested by the above experiment is that the viscous

stress tensor 7;; is proportional to the velocity gradient v; ; and so we write
Tik = CikmpUm,p, (2515)

where c¢;imp is a proportionality constant which is dependent upon the fluid density.
The viscous stress tensor must be independent of any reference frame, and hence we assume that the
proportionality constants c;imp can be represented by an isotropic tensor. Recall that an isotropic tensor

has the basic form

Cikmp = A*éikémp + M* (5inl,5kp + 6ip5km) +v* (6im6kp - 5ip6km) (2-5-16)
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where \*, u* and v* are constants. Examining the results from equations (2.5.11) and (2.5.13) we find that if
the viscous stress is symmetric, then 7;; = 7;;. This requires v* be chosen as zero. Consequently, the viscous
stress tensor reduces to the form

Tikk = N 0ikUp p + 1 (Vi + Vik)- (2.5.17)
The coefficient p* is called the first coefficient of viscosity and the coefficient A* is called the second coefficient
of viscosity. Sometimes it is convenient to define

2
C=X"+ g“* (2.5.18)

as “another second coefficient of viscosity,” or “bulk coefficient of viscosity.” The condition of zero bulk
viscosity is known as Stokes hypothesis. Many fluids problems assume the Stoke’s hypothesis. This requires
that the bulk coefficient be zero or very small. Under these circumstances the second coefficient of viscosity
is related to the first coefficient of viscosity by the relation \* = —% w*. In the study of shock waves and
acoustic waves the Stoke’s hypothesis is not applicable.

There are many tables and empirical formulas where the viscosity of different types of fluids or gases
can be obtained. For example, in the study of the kinetic theory of gases the viscosity can be calculated
from the Sutherland formula p* = M where C7,Cy are constants for a specific gas. These constants
can be found in certain tables. The quathity g is the gravitational constant and T is the temperature in
degrees Rankine (°R = 460 + °F'). Many other empirical formulas like the above exist. Also many graphs

and tabular values of viscosity can be found. The table 5.1 lists the approximate values of the viscosity of

some selected fluids and gases.

Viscosity of selected fluids and gases
Table 5.1 in units of anf% = Poise
at Atmospheric Pressure.
Substance 0°C 20°C 60°C 100°C
Water 0.01798 0.01002 0.00469 0.00284
Alcohol 0.01773
Ethyl Alcohol 0.012 0.00592
Glycol 0.199 0.0495 0.0199
Mercury 0.017 0.0157 0.013 0.0100
Air 1.708(10~%) 2.175(107%)
Helium 1.86(10~%) | 1.94(10%) 2.28(10~%)
Nitrogen 1.658(10%) | 1.74(10~%) | 1.92(107%) 2.09(10~%)

The viscous stress tensor given in equation (2.5.17) may also be expressed in terms of the rate of

deformation tensor defined by equation (2.5.6). This representation is
Tij = )\*éijDkk + 2M*Dij7 (2.5.19)

where QD” = Vi,j + Vji and Dkk = D11 + D22 + D33 = V1,1 + V22 + V3,3 = V4,5 = © is the rate of change

of the dilatation considered earlier. In Cartesian form, with velocity components u, v, w, the viscous stress



tensor components are

ou v Ow ou  Ov
ze =N +2u*)— + X[ — + — = =p* | — + —
T. (A +2p )8x + (8y + 82) Tyx = Toy =M (By 81)
" 1o} L [0 0 (O o
Tyy :(A +2N )8_v+>\ (8_Z+8_1;}) Tzx = Txz —H (8_’:4'8—1:)
(42 *)8 e <8u+81}) - . *(Bv_’_aw)
Tzz = - - - = = a =
H 0z or Oy = vz =H 9z Oy

In cylindrical form, with velocity components v.., vy, v, the viscous stess tensor components are

vy
Trr =207 + \*V -

L [10v Ovg vy
8 Tor = Tro =K (_ T“F—*—)

N 81}9 Uy r 06 or r
Too =217\~ oot 7 Ovy sz)

8v Trz = Tzr :/14* ( 02 + or
T2z =2p° ZZ LAV -
8 10v, Ovy

T20 = Tz =K (_ —)
1
where V.V = (rvr) + _% + 9z r 00 9z
r 00 0z

In spherical coordinates, with velocity components v,, vg, vg, the viscous stress tensor components have the

form
L O, o
=2 A*V
Too =207 57 S+ ( o (v9)+1avp)
T =Tn, = —
10vg ) Po o0 =H <9p p 00
Tog = 20 +AV -V 1 8 9
p oyt vr ., 9 (Y
Tob =2/ ( 8U¢ + ”9—C0t9) LAYV Tor = Teo =H (PSin9 ¢ +pap ( p ))
2] sin @ 8(;5 p Tou = Tup =i sinf 0 Vg n 1 vy
. 19 1 ) 1 v ¢ = 790 = p 90 \sinf) ' psind 9¢
here V=== (p? 0 et
W v p2 dp ( ) psind 90 (sin Bvp) + psinf O¢p

Note that the viscous stress tensor is a linear function of the rate of deformation tensor D;;. Such a
fluid is called a Newtonian fluid. In cases where the viscous stress tensor is a nonlinear function of D;; the

fluid is called non-Newtonian.

Definition: (Newtonian Fluid) If the viscous stress tensor 7;;
is expressible as a linear function of the rate of deformation tensor
D;;, the fluid is called a Newtonian fluid. Otherwise, the fluid is

called a non-Newtonian fluid.

Important note: Do not assume an arbitrary form for the constitutive equations unless there is ex-
perimental evidence to support your assumption. A constitutive equation is a very important step in the
modeling processes as it describes the material you are working with. One cannot arbitrarily assign a form
to the viscous stress and expect the mathematical equations to describe the correct fluid behavior. The form
of the viscous stress is an important part of the modeling process and by assigning different forms to the
viscous stress tensor then various types of materials can be modeled. We restrict our study in these notes

to Newtonian fluids.

In Cartesian coordinates the rate of deformation-stress constitutive equations for a Newtonian fluid can

be written as

0ij = —pij + A"0i; Dir + 200" Dy (2.5.20)
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which can also be written in the alternative form
0ij = —p(sij + A*éijvk,k =+ ILL*(’UiJ + ’Ujﬂ‘) (2521)

involving the gradient of the velocity.
Upon transforming from a Cartesian coordinate system z%, = 1,2,3 to a more general system of

coordinates T, i = 1,2, 3, we write

_ dy" oy’
Now using the divergence from equation (2.1.3) and substituting equation (2.5.21) into equation (2.5.22) we
obtain a more general expression for the constitutive equation. Performing the indicated substitutions there

results . ]
Oy oy’
aT™ oxT"

Tmn = [—D8ij + XN 8i50", + 1* (vi s + v5.4)]

Dropping the bar notation, the stress-velocity strain relationships in the general coordinates z%,i = 1,2, 3, is

Omn = —PYmn + /\*gmngikvi,k + M* (Um,n + 'Un,m)- (2-5-23)

Summary

The basic equations which describe the motion of a Newtonian fluid are :

Continuity equation (Conservation of mass)

do Do

ot + (Qvi)}i =0, or Dr + oV - V=0 1 equation. (2.5.24)
Conservation of linear momentum aif'j + ob® = 01", 3 equations
: DV =

or in vector form 05 = ob+V-O=0pb—Vp+V-T (2.5.25)

where 0 = 30, Z?Zl(—péij +7ij)éiéj and T =30, 23:1 Ti; €; €; are second order tensors. Conser-
vation of angular momentum o = ¢7°, (Reduces the set of equations (2.5.23) to 6 equations.) Rate of

deformation tensor (Velocity strain tensor)
1 .
D;; = 3 (vij +v54), 6 equations. (2.5.26)

Constitutive equations

Omn = —DPGmn + N Gmng™ i g + 15 Wi + Vnm),s 6 equations. (2.5.27)



In the cgs system of units the above quantities have the following units of measurements in Cartesian

p is the pressure [p] = dyne/cm?

coordinates
v; is the velocity field , i =1,2,3, [v;] = cm/sec
oi; is the stress tensor, 4,j =1,2,3, [0:;] = dyne/cm?
o is the fluid density [0] = gm/cm?®
b" is the external body forces per unit mass ['] = dyne/gm
D;; is the rate of deformation tensor [D;j] = sec™!
|
]

A*,u*  are coefficients of viscosity N] = [p*
where 1 Poise = 1gm/cmsec

If we assume the external body forces per unit mass are known, then the equations (2.5.24), (2.5.25),

(2.5.26), and (2.5.27) represent 16 equations in the 16 unknowns

Qav17U27U3)Ull)01270135022502370-33)D115D12)D13)D22)D237D33'

Navier-Stokes-Duhem Equations of Fluid Motion

Substituting the stress tensor from equation (2.5.27) into the linear momentum equation (2.5.25), and
assuming that the viscosity coeflicients are constants, we obtain the Navier-Stokes-Duhem equations for fluid

motion. In Cartesian coordinates these equations can be represented in any of the equivalent forms
00; = 0b; — p,j6ij + (A" + ") vk ki + v
-+ oujvij = obi + (=pdij + 7ij)

v

"o (2.5.28)
89% 0.
— + (evivj + pdij — 7ij) ; = obi

ot
Dv - X x - w2
05 =0b—=Vp+ N +p" )V (V-0)+p" Vo
Dy ov S, . . . - . N .
where Dt o + (U V) ¥ is the material derivative, substantial derivative or convective derivative. This

derivative is represented as

b = 8vi + 8’Uidij_ a’l)i + (%ivj_ a’l)i
ot oxd dt ot dxi Ot

+ v 07 (2.5.29)

In the vector form of equations (2.5.28), the terms on the right-hand side of the equation represent force
terms. The term Ql_; represents external body forces per unit volume. If these forces are derivable from a
potential function ¢, then the external forces are conservative and can be represented in the form —pV ¢.
The term —V p is the gradient of the pressure and represents a force per unit volume due to hydrostatic
pressure. The above statement is verified in the exercises that follow this section. The remaining terms can

be written
ﬁ)iscous = (/\* + M*)v (v : 17) + M*VQU (2530)
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and are given the physical interpretation of an internal force per unit volume. These internal forces arise
from the shearing stresses in the moving fluid. If f;iscous is zero the vector equation in (2.5.28) is called
Euler’s equation.

If the viscosity coefficients are nonconstant, then the Navier-Stokes equations can be written in the

Cartesian form

ov; ov; 0 vy, « [ Ovi  Ovj
Q[W +v]8xj] =0b; +8 - [ poij + A 5”8 +p <8a:j +8xi>]

dp 0 Ovy, 0 ov;  Ovj
=pb; — Af— — |
¢ ox; * ox; < 8xk> * OxJ [ﬂ <8a:j * 83:1)]
which can also be written in terms of the bulk coefficient of viscosity { = \* + % w* as
ov; ov; 8p 2 vy, 0 « [ Ovi  Ovj
— ; =ob; — e —
ol ot T (%Uj] ¢ 8331 ((C 3t )8xk> * OxJ [ﬂ <8a:j * 83:1)]
8p Ovy, 0 ov;  Ov; 2. Oug
¢ 8331 (Cﬁxk> * OxJ [M (8xj * ox; 3 ]8xk>]

These equations form the basics of viscous flow theory.

In the case of orthogonal coordinates, where gy = h? (no summation) and g;; = 0 for i # j, general

expressions for the Navier-Stokes equations in terms of the physical components v(1),v(2),v(3) are:

Navier-Stokes-Duhem equations for compressible fluid in terms of physical components: (i £ #Fk)

206 200 50, 2 1), o0 )
ot h1 Ox1 ho Oxo hs Oxs

v(j) 3hj . Ohy v(k) ( )
“heny \" Doz T 050 | T
O Lon 10 (g gy [ 0 (1) o (v( >) oh;
- AV -V it A ) e
®hi " hiox | h ( voV)+ ity |hiom \ 1y ) © a )| on;
[h_i ( ( )} _2ur |1 Ov(y) G (k) 9 | v(i) Ohy
hy Oxp h ox; Bark hih; | h; Ox; hjhy axk hihj Ox;
2u* | 1 Ov(k ) v(i) ahk v(k) Ohy Bhk 1 0 . 1 ov(i)  wv(j) Oh; = w(k) Ohy
- 2 by [ — + +
hihg hk Oz h ihg Ox; hkh ox; &rz hih ox; h; Ox; hih; Oh;  hihy Oxy,

o o (e (52) e (5)) } : — {ormn (e 3 (52) B DY

(2.5.31)

where V - ¥ is found in equation (2.1.4).

In the above equation, cyclic values are assigned to ¢,j and k. That is, for the x1 components assign
the values ¢ = 1,5 = 2,k = 3; for the o components assign the values i = 2,5 = 3,k = 1; and for the x3
components assign the values i =3,j =1,k = 2.

The tables 5.2, 5.3 and 5.4 show the expanded form of the Navier-Stokes equations in Cartesian, cylin-

drical and spherical coordinates respectively.



DV’”—bf@+3_2*%+,\*v\7}+3{*<8Vz+%)}+§[*<avm+'wz>_
°Dr T 9r T oz I Ton oy "' oy T oz o M oz T or )

DV, op 7] (BVy OV )} 7] { L OVy N ~} 17} { N <8Vy oV, )'
=pby — — + — — 2 —=—= 4+ X'V V — —
e Dt —0% oy + ox _H ozr + Jy + oy ’ Jy + + 0z " 0z + Jy

sz—bf%Jrﬁ_*<6VZ+6VI)}+£|:*(aVZJr%)}JrE[Q*aVZJr)\VV
®Dor T T o M Uar T oz ay 1 Vay T oz = P

D a() a() a() 9(0)
where E()fﬁ-i—vyd——i—vyd——i—v o

- OV 9V, OV,
and V.V =
ox + oy 0z

(2.5.31a)

Table 5.2 Navier-Stokes equations for compressible fluids in Cartesian coordinates.

DV, V2 p V. ., 19 19V, 8Vy Vy
— | =pby — — 2u* vV - - — - =
Q[Dt 7‘:| ¢ d+ [L or }4_ d@[ (r89+8r 7’)}

1s] oV, 2u* OV 10V Vi

Rl ()2 ()

o) 0z or r or r 00 r

DVy ViV 10p O [ ,(10V, 0V, V, 10 10Vy Vi) ac o
g[—9+7"}_b7——p+ [ (— +=2 9)]+——{2 (——9+—)+,\v-v}

Dt 00  Or r 00 or r r 00 r 00
L0 [ (1 V. +6V9)} 2u* [1 v,  avy VQ}
0z r 00 0z r r 00 or r
DV. gp 107, (8V, OV 107, /10V. ave)} 8 { A }
—ob. — 2 - 0V + X |2 AV -V
“Dr ¢ (92+r<9r{ (aerar)]Jrrae[“ <r69+6z i 2z +
D a0) 20) | Ve o() a0)
where =()=22+V, Yo 90 v
D 0 + or + r 00 Ve 0z

and V.V = 1a(rvr)+l%+avz

r or r 00 0z

(2.5.31b)

Table 5.3 Navier-Stokes equations for compressible fluids in cylindrical coordinates.
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Observe that for incompressible flow 2 B¢ = 0 which implies V - V = 0. Therefore, the assumptions
of constant viscosity and incompressibility of the flow will simplify the above equations. If on the other
hand the viscosity is temperature dependent and the flow is compressible, then one should add to the above
equations the continuity equation, an energy equation and an equation of state. The energy equation comes
from the first law of thermodynamics applied to a control volume within the fluid and will be considered
in the sections ahead. The equation of state is a relation between thermodynamic variables which is added
so that the number of equations equals the number of unknowns. Such a system of equations is known as
a closed system. An example of an equation of state is the ideal gas law where pressure p is related to gas

density ¢ and temperature T by the relation p = oRT where R is the universal gas constant.

DV YirYd
Dt P

op 0 L0V, . 107, 0 Vg) w* 8Vp}
=pbp — — + — — 4+ AV V -— — (= —_—
%e d+d{ o }erae{“”ap( -

1 9 u* oV, . O V¢)}
+ psinf 0¢ {psin@ (ol T p@p (

w* [4 v, 20Vy 4V, 2 0Vy 2Vpcotd + poot 6 9] (V9 ) cot 6 BVP}
L e cot— [ =2 —Z'r
o op p 00 p psinf 0¢ P o p 00

DVy V,V, Vicotf 10p 8 a [V, av,
g[_up_e,et_ — by — 2 2P [ <_9)+M7_p}

Dt p p % * o op a pa_p p o0
10 [2u* (0Vy ) ~}
- V, AV -V
+pae[p (d@+ o)t
n 1 0 {u sinf 0 ( Vs ) w* 6V9:|
psinf 0¢ p 00 \sinf psinf 9¢
* 1 90V, 1 0V, Vi cot 0 o (Vg 10V,
(2 ) 1 (2439
) p 00 psinf 0¢ p op \ p p 00
DV, VoV, VoV cot 6 1 0 17} * 9V, o (V,
g|:_¢+u+9¢7:|ng¢, p+ |:'u' _p+*_(_¢>):|
Dt p psinf 0¢ psinf 0¢ dp \ p

) = %}
psinf 9¢

10 |:1L sinf 0 (
+-=
p 00 p 860
1 _,
+VgC0t9) +>\*V~V}

n |:2}L (
psin 6 8¢> né 8¢>

w* 3 0V, o (Vs sing 0 ([ Vg 1 0V
+ — —— +3p— | — ) +2cotd — | = +
p Lpsin® 0¢ op \ p p 00 \sin6 psinf 9¢

7] 17} Vo O Ve, 0
QJFVPBL;))JF;Q(@)ersiTlG@Ld))

D
where H() =

L1 8 ' v,
and V-V:id(p V) 1 OVp sin 0 1 b
p2  Op psing 90 psinf 9¢

(2.5.31¢)

Table 5.4 Navier-Stokes equations for compressible fluids in spherical coordinates.




We now consider various special cases of the Navier-Stokes-Duhem equations.

Special Case 1: Assume that b is a conservative force such that b = —V ¢. Also assume that the viscous

force terms are zero. Consider steady flow (g—f = 0) and show that equation (2.5.28) reduces to the equation

-1
(U-V)U= ?Vp — V¢ pis constant. (2.5.32)

Employing the vector identity
1
(U- V)= (Vx0)xv+ §V(17-U), (2.5.33)

we take the dot product of equation (2.5.32) with the vector @. Noting that 7- [(V x @) x @] = 0 we obtain
1
7-V [g + ¢+ 51)2} =0. (2.5.34)
This equation shows that for steady flow we will have

1
L o+ 5112 = constant (2.5.35)
4

along a streamline. This result is known as Bernoulli’s theorem. In the special case where ¢ = gh is a
2
v

force due to gravity, the equation (2.5.35) reduces to P + 5 + gh = constant. This equation is known as

Bernoulli’s equation. It is a conservation of energy statement which has many applications in fluids.

Special Case 2: Agsume that b = —V ¢ is conservative and define the quantity Q by

o 1
=V x¥=curld w= 5(2 (2.5.36)

as the vorticity vector associated with the fluid flow and observe that its magnitude is equivalent to twice
the angular velocity of a fluid particle. Then using the identity from equation (2.5.33) we can write the

Navier-Stokes-Duhem equations in terms of the vorticity vector. We obtain the hydrodynamic equations

—

07

. 1 1 1~
5 +Qxﬁ+§vv2:--vp—v¢+—fmcous, (2.5.37)
0 0

where f:,iscous is defined by equation (2.5.30). In the special case of nonviscous flow this further reduces to

the Euler equation

—

07
ot

If the density p is a function of the pressure only it is customary to introduce the function

. 1 1
+Q ><17+§Vv2 = —EVp—V(b.

P
P:/ dp so that VP = EVp: 1Vp
c © dp 0

then the Euler equation becomes
o = 1
— +Qxv=-V(P —v?).
5 (P+o+5v7)
Some examples of vorticies are smoke rings, hurricanes, tornadoes, and some sun spots. You can create
a vortex by letting water stand in a sink and then remove the plug. Watch the water and you will see that

a rotation or vortex begins to occur. Vortices are associated with circulating motion.
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Pick an arbitrary simple closed curve C' and place it in the fluid flow and define the line integral
K = ¢ U- é;ds, where ds is an element of arc length along the curve C, ¥ is the vector field defining the
velocit}?7 and é; is a unit tangent vector to the curve C. The integral K is called the circulation of the fluid
around the closed curve C. The circulation is the summation of the tangential components of the velocity

field along the curve C. The local vorticity at a point is defined as the limit

Circulation around C' . . .
lim —— = circulation per unit area.
Area—o Area inside C

By Stokes theorem, if curl@ = 0, then the fluid is called irrotational and the circulation is zero. Otherwise
the fluid is rotational and possesses vorticity.
If we are only interested in the velocity field we can eliminate the pressure by taking the curl of both

sides of the equation (2.5.37). If we further assume that the fluid is incompressible we obtain the special

equations
V-uv=0 Incompressible fluid, ¢ is constant.
Q = curlv Definition of vorticity vector. (2.5.38)
aQ ~ — M* 23 . .
o + VX (Q2x7)=—=—VQ Results because curl of gradient is zero.
0

Note that when  is identically zero, we have irrotational motion and the above equations reduce to the
Cauchy-Riemann equations. Note also that if the term V x (Q x ¥) is neglected, then the last equation in
equation (2.5.38) reduces to a diffusion equation. This suggests that the vorticity diffuses through the fluid
once it is created.

Vorticity can be caused by a rigid rotation or by shear flow. For example, in cylindrical coordinates let
V =rw ép, with r,w constants, denote a rotational motion, then curlV =V x V = 2w é., which shows the
vorticity is twice the rotation vector. Shear can also produce vorticity. For example, consider the velocity
field V = yé; with y > 0. Observe that this type of flow produces shear because |‘7| increases as y increases.
For this flow field we have curl V = V x V = — é5. The right-hand rule tells us that if an imaginary paddle

wheel is placed in the flow it would rotate clockwise because of the shear effects.

Scaled Variables

In the Navier-Stokes-Duhem equations for fluid flow we make the assumption that the external body
forces are derivable from a potential function ¢ and write b= -V ¢ [dyne/gm] We also want to write the

Navier-Stokes equations in terms of scaled variables

= U S - _ ¢ __ Y
vV = — Q—_ = — = —
Vo Qo d) g ’ y L

_ p - t T — <
= — t=— T = — Z = =
P Po T v L L

which can be referred to as the barred system of dimensionless variables. Dimensionless variables are intro-
duced by scaling each variable associated with a set of equations by an appropriate constant term called a
characteristic constant associated with that variable. Usually the characteristic constants are chosen from
various parameters used in the formulation of the set of equations. The characteristic constants assigned to

each variable are not unique and so problems can be scaled in a variety of ways. The characteristic constants



assigned to each variable are scales, of the appropriate dimension, which act as reference quantities which
reflect the order of magnitude changes expected of that variable over a certain range or area of interest
associated with the problem. An inappropriate magnitude selected for a characteristic constant can result
in a scaling where significant information concerning the problem can be lost. This is analogous to selecting
an inappropriate mesh size in a numerical method. The numerical method might give you an answer but
details of the answer might be lost.

In the above scaling of the variables occurring in the Navier-Stokes equations we let vy denote some
characteristic speed, po a characteristic pressure, gg a characteristic density, L a characteristic length, g the
acceleration of gravity and 7 a characteristic time (for example 7 = L/vg), then the barred variables U, P,

0,0, t, T, 7 and Z are dimensionless. Define the barred gradient operator by

V—Eé +3é +2éf
“oz Yoy ozt

where all derivatives are with respect to the barred variables. The above change of variables reduces the
Navier-Stokes-Duhem equations

—

ov

og T o(T-V)T=—oVo—Vp+ (N +pu" )V (V-0) +u* V25, (2.5.39)

ol 2
to the form () 5% + <Q(ZJO) (7 V)7 = —0ogaV o - () Vp

. ) (2.5.40)
L) S w9 (” “0) v

L2 L2

Now if each term in the equation (2.5.40) is divided by the coefficient pgv3/L, we obtain the equation

o O [N A* le = = l=2-
o9—+902(v-V)v=—7 — EV7pD —+1)= ‘0)+ =V 2.5.41
Sgat—i—g(v V) Fng) Vp+<u*+)RV(V v)—i—RVv (2.5.41)
which has the dimensionless coefficients
bE= p02 = BEuler number R= 2Vl _ Reynolds number
00V Ty
v3 ) ) . L
F = — = Froude number, g is acceleration of gravity S = — = Strouhal number.
g TVo

Dropping the bars over the symbols, we write the dimensionless equation using the above coefficients.

The scaled equation is found to have the form

—

v 1 A" 1 1
= +0(@-V)i=-=0oV¢—E —t1) = )+ =V 2.5.42
Sogy + o0 V)i = —50Ve Vp—f—(u*—f— )RV(V )+ 5V (2.5.42)
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Boundary Conditions

Fluids problems can be classified as internal flows or external flows. An example of an internal flow
problem is that of fluid moving through a converging-diverging nozzle. An example of an external flow
problem is fluid flow around the boundary of an aircraft. For both types of problems there is some sort of
boundary which influences how the fluid behaves. In these types of problems the fluid is assumed to adhere
to a boundary. Let 7, denote the position vector to a point on a boundary associated with a moving fluid,
and let 7 denote the position vector to a general point in the fluid. Define ¢(7) as the velocity of the fluid at
the point 7 and define ¥(7%,) as the known velocity of the boundary. The boundary might be moving within
the fluid or it could be fixed in which case the velocity at all points on the boundary is zero. We define the

boundary condition associated with a moving fluid as an adherence boundary condition.

Definition: (Adherence Boundary Condition)

An adherence boundary condition associated with a fluid in motion

is defined as the limit lim () = ¥(7}) where 73 is the position
T—T

vector to a point on the boundary.

Sometimes, when no finite boundaries are present, it is necessary to impose conditions on the components

of the velocity far from the origin. Such conditions are referred to as boundary conditions at infinity.

Summary and Additional Considerations

Throughout the development of the basic equations of continuum mechanics we have neglected ther-
modynamical and electromagnetic effects. The inclusion of thermodynamics and electromagnetic fields adds
additional terms to the basic equations of a continua. These basic equations describing a continuum are:

Conservation of mass

The conservation of mass is a statement that the total mass of a body is unchanged during its motion.
This is represented by the continuity equation

89

Do
ot + (") =0 or t—i—gVV 0

D

where ¢ is the mass density and v* is the velocity.

Conservation of linear momentum

The conservation of linear momentum requires that the time rate of change of linear momentum equal

the resultant of all forces acting on the body. In symbols, we write

D
a=1
where DD—”; = %—1{ + g;’k is the material derivative, F(Z ) are the surface forces per unit area, F (b) are the

body forces per unit mass and F Za) represents isolated external forces. Here S represents the surface and
V represents the volume of the control volume. The right-hand side of this conservation law represents the

resultant force coming from the consideration of all surface forces and body forces acting on a control volume.



Surface forces acting upon the control volume involve such things as pressures and viscous forces, while body
forces are due to such things as gravitational, magnetic and electric fields.

Conservation of angular momentum

The conservation of angular momentum states that the time rate of change of angular momentum

(moment of linear momentum) must equal the total moment of all forces and couples acting upon the body.

In symbols,
D ) . ) n . .
H{f g Qeijkx]vk dr = /Seijkij(]Z) ds + /v QeijkaF(’Z) dr + Z(eijkx%a)F(ka) + M(la)) (2544)
a=1

where M, (ia) represents concentrated couples and F(’jy) represents isolated forces.

Conservation of energy

The conservation of energy law requires that the time rate of change of kinetic energy plus internal
energies is equal to the sum of the rate of work from all forces and couples plus a summation of all external
energies that enter or leave a control volume per unit of time. The energy equation results from the first law
of thermodynamics and can be written
D . A
D E+E)=W+Qn (2.5.45)
where E is the internal energy, K is the kinetic energy, W is the rate of work associated with surface and
body forces, and @}, is the input heat rate from surface and internal effects.

Let e denote the internal specific energy density within a control volume, then E = / oe dT represents
the total internal energy of the control volume. The kinetic energy of the control VOIUH}}Q is expressed as
K= 1 / ggijvivj dr where v’ is the velocity, o is the density and dr is a volume element. The energy (rate

2. )y
of work) associated with the body and surface forces is represented

n
W = / gij Flov’ dS + / 09ij Flyyv’ dr + Z(gijF(ia)’Uj + 9ij M{ )
S %

a=1

where w’ is the angular velocity of the point acz )’ F (ia) are isolated forces, and M (ia) are isolated couples.

oQ

Two external energy sources due to thermal sources are heat flow ¢’ and rate of internal heat production 5

per unit volume. The conservation of energy can thus be represented

Dgt /v ole + %gij'l)i’l}j) dr :/S(Qiijs)vj —¢in')dS + /V(QgijF(ib)Uj + %) dr
n (2.5.46)
+ Z(gijF(ia)vj + gijM(ia)Wj +Uw))
a=1
where U, represents all other energies resulting from thermal, mechanical, electric, magnetic or chemical
sources which influx the control volume and D/Dt is the material derivative.
In equation (2.5.46) the left hand side is the material derivative of an integral of the total energy

er = ole + % gijvivj ) over the control volume. Material derivatives are not like ordinary derivatives and so
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we cannot interchange the order of differentiation and integration in this term. Here we must use the result

that D 5
_ oet e,V
D_t . €t dT = /v ( 81‘,‘ =+ V (etV)) dT.

To prove this result we consider a more general problem. Let A denote the amount of some quantity per
unit mass. The quantity A can be a scalar, vector or tensor. The total amount of this quantity inside the

control volume is A = fv oA dr and therefore the rate of change of this quantity is

0A [ 0(eA) , / -
5 _/v 51 dT_Dt Vg.AdT SQAV ndsS,

which represents the rate of change of material within the control volume plus the influx into the control
volume. The minus sign is because 7 is always a unit outward normal. By converting the surface integral to

a volume integral, by the Gauss divergence theorem, and rearranging terms we find that

D _ 9(0A) . -,
o VQAdT_/V[ 5 +V (Q.AV):| dr.

In equation (2.5.46) we neglect all isolated external forces and substitute F(is) = g% nj, F(ib) = b* where
045 = —pdi; + 7;;. We then replace all surface integrals by volume integrals and find that the conservation of

energy can be represented in the form
0 - — - - 0
%-FV%QV):V((7'~V)—V~(j—|—gb-V—|—8—6;52 (2.5.47)
where e; = pe + o(v? +v3 +v2)/2 is the total energy and O = Zle Z?‘:l 0i; €; €; is the second order stress

tensor. Here
3 3 3

0--‘7: —pV—l—Zlevj é1+27'2j’l)j é2+27'3j’Uj é3 = —pV—FT'V

j=1 j=1 j=1
and 7;; = p*(vi; +vj,:) + X650 1 is the viscous stress tensor. Using the identities
D(ei/o)  Oey = D(e¢/0) De D(VQ/Q)

= 7o . d o 2xa/e) _ re
Dt ot TV (V) and o—m °Dr T oy

together with the momentum equation (2.5.25) dotted with V as

the energy equation (2.5.47) can then be represented in the form

De - L 0Q
°5r +p(V-V)=-V- -G+ B + @ (2.5.48)

where @ is the dissipation function and can be represented
P = (Tijvi) g T ViTij5 = V- (T . ‘7) - (V . T) . ‘7

As an exercise it can be shown that the dissipation function can also be represented as ® = 2u*D;; D;; +1702

where © is the dilatation. The heat flow vector is determined from the Fourier law of heat conduction in



terms of the temperature T' as ¢ = —kV T, where k is the thermal conductivity. Consequently, the energy
equation can be written as
De | (V- ‘7)—@+<I>+V(kVT) (2.5.49)
D TP ~ ot >
In Cartesian coordinates (x,y, z) we use
D 9 0 0 0
— == — 4V, V.
Di ot o T vy T
V.7 :8Vx % oV,
Ox dy 0z

2—2_’_ £+‘/98 Vﬁ

Dt ot "or 00 0z

L 10 18V9 v,
10 oT 10 oT 0 oT
V'WT);a—( ar>+ﬁ%(”%)+$(”%>

and in spherical coordinates (p, 6, ¢)

D_0. 0 Vi Vy 0
Dt Ot p@p p 00 psinf 8¢
- 10 1 0 1 9V,
voV= 2 0p (Vo) psin6 00 (Vo sin6) + psinf O¢
19 (40T 1 0 orT 1 0 oT
V051 = (05 ) + o (=055 ) * g (“a6)

The combination of terms h = e 4+ p/p is known as enthalpy and at times is used to express the energy

equation in the form
D h Dp 0Q

°pr “ ot Tar

The derivation of this equation is left as an exercise.

—V-7+ .

Conservative Systems

Let @ denote some physical quantity per unit volume. Here ) can be either a scalar, vector or tensor
field. Place within this field an imaginary simple closed surface S which encloses a volume V. The total
amount of ) within the surface is given by [[ fv Q d7 and the rate of change of this amount with respect
to time is 8—‘% J[] Qdr. The total amount of @ within S changes due to sources (or sinks) within the volume
and by transport processes. Transport processes introduce a quantity f, called current, which represents a
flow per unit area across the surface S. The inward flux of material into the volume is denoted |7, S —J-fdo
(7 is a unit outward normal.) The sources (or sinks) S¢ denotes a generation (or loss) of material per unit

volume so that [[ fv Sq dr denotes addition (or loss) of material to the volume. For a fixed volume we then

J[[ Fir==[[ 7ndo+ [[[ squn

have the material balance
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Using the divergence theorem of Gauss one can derive the general conservation law

%_? VT =S (2.5.50)

The continuity equation and energy equations are examples of a scalar conservation law in the special case

where Sg = 0. In Cartesian coordinates, we can represent the continuity equation by letting
Q=0 and J =V =o(Vyés+V,és+V.é5) (2.5.51)

The energy equation conservation law is represented by selecting @@ = e; and neglecting the rate of internal

heat energy we let
_ 5 ;

J=|(er+p)vr =Y viTwi + | E1+
L i=1 _
- 5 .
(et +pJv2 — Z ViTyi + Qy | €2+ (2.5.52)
L i=1 i
- 5 :
(et +p)vs — Z ViTz + Q2| €3.
i=1

In a general orthogonal system of coordinates (1, z2,z3) the equation (2.5.50) is written

o (ahahsQ)) + o (k1) + 5 (s ) + 5 (s ) =0,

where h1, ho, hg are scale factors obtained from the transformation equations to the general orthogonal
coordinates.

The momentum equations are examples of a vector conservation law having the form

oda -
= +v-(T)=ob (2.5.53)
ot
3 3
where @ is a vector and I is a second order symmetric tensor T = Z Z T} €5 €. In Cartesian coordinates
k=1 j=1

we let @ = o(Vyé1 + V,éa + V. é3) and T;; = pvv; + pd;j — Ti;. In general coordinates (z1,z2,z3) the
momentum equations result by selecting @ = 9‘7 and Tj; = pv;v; + pdsj — 735 In a general orthogonal system

the conservation law (2.5.53) has the general form

0 0 0 0 -

9 7)) + —— T. ¢ — T.¢ — T é3)) = ob. 2.5.54
o ((hlhghga)) + 92, ((hghg 61)) + 92, ((hlhg 62)) + 92 ((hlhg 63)) ob ( 5.5 )
Neglecting body forces and internal heat production, the continuity, momentum and energy equations

can be expressed in the strong conservative form

oU OE OF 0G

En + 97 + By + 92 =0 (2.5.55)
where
P
PVa
U=1|pV, (2.5.56)
pVz

€t



- pV;c -
pVxQ +Dp— Tax
PVsz — Tgz
L (et +P)Vz - Vszz - Vysz - ‘/;Tzz + Gz
- ,OVy -
PV Vy — Tay
F= pVy2 + P — Tyy
PVsz - Tyz
L (et +p)vy - VzTyz - VyTyy - VzTyz + qy
- sz -
pVaVe — Tuz

G = pVyVe — 7y
pvz2 + D — Tzz
-(et +p)‘/2 - Vxsz - Vysz -

where the shear stresses are 7;; = pu*(V;; + Vji) + 0:j N Vi for ¢, 5,k =1,2,3.
Computational Coordinates

(2.5.57)

(2.5.58)

(2.5.59)

‘/ZTZZ + qZ -

To transform the conservative system (2.5.55) from a physical (z, y, z) domain to a computational (&, 7, {)
domain requires that a general change of variables take place. Consider the following general transformation

of the independent variables

§=¢&(xy.2)  n=nyz2) (=(zy,7) (2.5.60)
with Jacobian different from zero. The chain rule for changing variables in equation (2.5.55) requires the
operators

o0) _00) 3( ) o()
o0) _90) 3( ) 20)
AW 2.5.61
20) _90) 0( ) 90)
82 8€ EZ + Z + 8C C:Z
The partial derivatives in these equations occur in the differential expressions
Y dg & & & |de
dn =ny dx +n,dy +n,dz or dn| = |1 My N dy (2.5.62)
d = 2 d
0 =G, dr + G dy + C. dz ot el L
In a similar mannaer from the inverse transformation equations
x = (£ n,C) y(&m.0) =2(£1,¢) (2.5.63)
we can write the differentials
dr =x¢ d d d
x =x¢ d§ + Ty dn + x¢ dC i - i
dy =ye d§ + ypdn +ycd¢  or dy | = |ve yn Y dn (2.5.64)
dz Ze &2y % d¢

dz =z¢ d€ + z¢ dC + z¢ dC
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The transformations (2.5.62) and (2.5.64) are inverses of each other and so we can write

1
&z fy & Te Ty T
Ne My Mz | =Y Yn Y¢

C:c Cy (:z Z¢  Zn ¢
Yn2¢ = Y¢zn —(znzc — Tc20) Ln¥Y¢ — T¢Yn
=J | =(yezc —ycze)  wez¢ —weze  —(Teye — Tye)
Yezn — Ynz¢ —(ze2n — Tp2¢) LeYn — TnlYe

By comparing like elements in equation (2.5.65) we obtain the relations

§o =J (ynzc — yczn) N = — J(Yeze — ycze) Co =J (Yezn — ynze)

&y = — J(znze — xc2n) ny =J(xeze — 2¢2¢) Gy =— J(Tezy — Tn2e)

& =J (znyc — xcyn) n: == J(weyc —weye) G =J(weyn — Tye)
The equations (2.5.55) can now be written in terms of the new variables (£, 7, () as

8U oE 8E 8E F 8F 8 8G oG

Now divide each term by the Jacobian J and write the equation (2.5.67) in the form

9 (g) (E5I+F§y+afz
o

Cz:O

at

B +FCy + GG

)
g (Enx+F77y+an)
iz )
{8 (5)-
e (5) ()& (5))
“o{a (5) v () (5)) =0

(2.5.65)

(2.5.66)

(2.5.67)

(2.5.68)

Using the relations given in equation (2.5.66) one can show that the curly bracketed terms above are all zero

and so the transformed equations (2.5.55) can also be written in the conservative form

aﬁ OF Lo OF + oG Ly
o€ oC

where

D
Il

U

J

E¢ + F&y + Géz
J

En. + Fny, + Gn,
J

E¢ + F¢y + GG
J

&)
Il

)
|

)
|

(2.5.69)

(2.5.70)



Fourier law of heat conduction

The Fourier law of heat conduction can be written ¢; = —&T; for isotropic material and ¢; = —k;;7;
for anisotropic material. The Prandtl number is a nondimensional constant defined as Pr = % so that

the heat flow terms can be represented in Cartesian coordinates as

cpp* 0T cpp* 0T cpp* 0T
qz = — . qQy = — - qz = — o
Pr oz Pr Oy Pr 0z
Now one can employ the equation of state relations P = ge(y — 1), ¢, = J—i , ol = % and write the

above equations in the alternate forms
_ w9 (P Y Ty i w9 (P
o= Pr(y—=1)0z \ o = Pr(y—1)0y \ o &= Pr(y—1)0z \ o

[~vP P
The speed of sound is given by a = o /YRT and so one can substitute a? in place of the ratio ik
0 0

in the above equations.

Equilibrium and Nonequilibrium Thermodynamics

High temperature gas flows require special considerations. In particular, the specific heat for monotonic
and diatomic gases are different and are in general a function of temperature. The energy of a gas can be
written as e = e; + e, + e, + e. + e, where e; represents translational energy, e, is rotational energy, e, is
vibrational energy, e, is electronic energy, and e, is nuclear energy. The gases follow a Boltzmann distribution
for each degree of freedom and consequently at very high temperatures the rotational, translational and
vibrational degrees of freedom can each have their own temperature. Under these conditions the gas is said
to be in a state of nonequilibrium. In such a situation one needs additional energy equations. The energy
equation developed in these notes is for equilibrium thermodynamics where the rotational, translational and
vibrational temperatures are the same.

Equation of state

It is assumed that an equation of state such as the universal gas law or perfect gas law pV = nRT
holds which relates pressure p [N/m?], volume V [m3], amount of gas n [mol],and temperature T [K|] where
R[J/mol — K] is the universal molar gas constant. If the ideal gas law is represented in the form p = oRT
where o [Kg/m?] is the gas density, then the universal gas constant must be expressed in units of [J/Kg— K]
(See Appendix A). Many gases deviate from this ideal behavior. In order to account for the intermolecular

forces associated with high density gases, an empirical equation of state of the form

M1 M2
p=pRT + Z Bap™t + e 1P—2p” Z cnp T
n=1 n=1

involving constants My, Ms, By, ¢n, 71, 72,71, Y2 is often used. For a perfect gas the relations

c R YR
e=cT vy . Cy P Cp P

h=c,T
hold, where R is the universal gas constant, c, is the specific heat at constant volume, ¢, is the specific
heat at constant pressure, v is the ratio of specific heats and h is the enthalpy. For ¢, and ¢, constants the

relations p = (y — 1)ge and RT = (v — 1)e can be verified.
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EXAMPLE 2.5-1. (One-dimensional fluid flow)

Construct an x-axis running along the center line of a long cylinder with cross sectional area A. Consider
the motion of a gas driven by a piston and moving with velocity v1 = u in the x-direction. From an Eulerian
point of view we imagine a control volume fixed within the cylinder and assume zero body forces. We require
the following equations be satisfied.

Conservation of mass % + div(pV) = 0 which in one-dimension reduces to % + e (ou) = 0.
x

0 0
Conservation of momentum, equation (2.5.28) reduces to e (ou) + o (ng) + 8_p =0.
x x
Conservation of energy, equation (2.5.48) in the absence of heat flow and internal heat production,
. : . e de ou . . . .
becomes in one dimension o | — +u— | + pa— = 0. Using the conservation of mass relation this
x

ot ox

0] 0 Ju
equation can be written in the form — (ge) + =— (geu — =0.
q 5z (0¢) + 5 (oew) + o
In contrast, from a Lagrangian point of view we let the control volume move with the flow and consider
advection terms. This gives the following three equations which can then be compared with the above

Eulerian equations of motion.

d D 0
Conservation of mass E(QJ ) = 0 which in one-dimension is equivalent to D—f + ga—u =0.
x
0
Conservation of momentum, equation (2.5.25) in one-dimension QF’:, + 8_p =0.
x
D 0
Conservation of energy, equation (2.5.48) in one-dimension QD—i + pa—u = 0. In the above equations
x

DO _ o
Dt — ot

In both the Eulerian and Lagrangian equations the pressure p represents the total pressure p = pg + p,

()+ ua%( ). The Lagrangian viewpoint gives three equations in the three unknowns p, u, e.

where p, is the gas pressure and p, is the viscous pressure which causes loss of kinetic energy. The gas pressure
is a function of p, e and is determined from the ideal gas law py = oRT = o(cp — ¢)T = Q(Z—i —1)e, T or
pg = o(y — 1)e. Some kind of assumption is usually made to represent the viscous pressure p, as a function
of e,u. The above equations are then subjected to boundary and initial conditions and are usually solved

numerically.

Entropy inequality

Energy transfer is not always reversible. Many energy transfer processes are irreversible. The second
law of thermodynamics allows energy transfer to be reversible only in special circumstances. In general,
the second law of thermodynamics can be written as an entropy inequality, known as the Clausius-Duhem
inequality. This inequality states that the time rate of change of the total entropy is greater than or equal to
the total entropy change occurring across the surface and within the body of a control volume. The Clausius-

Duhem inequality places restrictions on the constitutive equations. This inequality can be expressed in the

D/ , =

— [ osdr > /sznidS—l—/pde—i— B(a
Dt Jy s v Z @
—_———

form

a=1

Rate of entropy increase Entropy input rate into control volume

where s is the specific entropy density, s° is an entropy flux, b is an entropy source and B are isolated

entropy sources. Irreversible processes are characterized by the use of the inequality sign while for reversible
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Figure 2.5-3. Interaction of various fields.

processes the equality sign holds. The Clausius-Duhem inequality is assumed to hold for all independent
thermodynamical processes.

If in addition there are electric and magnetic fields to consider, then these fields place additional forces
upon the material continuum and we must add all forces and moments due to these effects. In particular we

must add the following equations

Gauss’s law for magnetism V-B=0 % ;;i (VgB') = 0.
Gauss’s law for electricit D) 1 9 i
y V-D=op. %axi(\/gD):Qe-
- 9B . OB!
Faraday’s law E=_-2= ijkg . — )
— v ot R T
- - 9D . , oD
Ampere’s law VxH=J+ aa_t e”ka,j = J 4+ aa—t

where g, is the charge density, J° is the current density, D; = eg E; + P; is the electric displacement vector,
H; is the magnetic field, B; = M{Hj 4+ M; is the magnetic induction, F; is the electric field, M; is the
magnetization vector and P; is the polarization vector. Taking the divergence of Ampere’s law produces the
law of conservation of charge which requires that

00e 1 0

age r_ A
otV J=0 at‘L\/gaxi(\/ﬁJ)*o'

The figure 2.5-3 is constructed to suggest some of the interactions that can occur between various
variables which define the continuum. Pyroelectric effects occur when a change in temperature causes
changes in the electrical properties of a material. Temperature changes can also change the mechanical
properties of materials. Similarly, piezoelectric effects occur when a change in either stress or strain causes
changes in the electrical properties of materials. Photoelectric effects are said to occur if changes in electric
or mechanical properties effect the refractive index of a material. Such changes can be studied by modifying
the constitutive equations to include the effects being considered.

From figure 2.5-3 we see that there can exist a relationship between the displacement field D; and

electric field ;. When this relationship is linear we can write D; = €;;F; and E; = 3, D, where €;; are
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dielectric constants and (3;, are dielectric impermabilities. Similarly, when linear piezoelectric effects exist
we can write linear relations between stress and electric fields such as 0;; = —gr;jEr and E; = —e;j105k,
where gr;; and e;;, are called piezoelectric constants. If there is a linear relation between strain and an
electric fields, this is another type of piezoelectric effect whereby e;; = d;;x Er and Er = —h;jie;i, where
di;r. and h;;, are another set of piezoelectric constants. Similarly, entropy changes can cause pyroelectric
effects. Piezooptical effects (photoelasticity) occurs when mechanical stresses change the optical properties of
the material. Electrical and heat effects can also change the optical properties of materials. Piezoresistivity
occurs when mechanical stresses change the electric resistivity of materials. Electric field changes can cause
variations in temperature, another pyroelectric effect. When temperature effects the entropy of a material
this is known as a heat capacity effect. When stresses effect the entropy in a material this is called a
piezocaloric effect. Some examples of the representation of these additional effects are as follows. The

piezoelectric effects are represented by equations of the form
0ij = —hmijDn  Di = dijroik  €ij = grijDi  Di = eijreji

where i, diji, grij and e;j; are piezoelectric constants.
Knowledge of the material or electric interaction can be used to help modify the constitutive equations.
For example, the constitutive equations can be modified to included temperature effects by expressing the

constitutive equations in the form
0ij = Cijriex — Bij AT and €ij = SijkiOk + i AT

where for isotropic materials the coefficients a;; and 3;; are constants. As another example, if the strain is

modified by both temperature and an electric field, then the constitutive equations would take on the form
€ij = SijkiOkt + i AT + dpij B,

Note that these additional effects are additive under conditions of small changes. That is, we may use the
principal of superposition to calculate these additive effects.

If the electric field and electric displacement are replaced by a magnetic field and magnetic flux, then
piezomagnetic relations can be found to exist between the variables involved. One should consult a handbook
to determine the order of magnitude of the various piezoelectric and piezomagnetic effects. For a large

majority of materials these effects are small and can be neglected when the field strengths are weak.

The Boltzmann Transport Equation

The modeling of the transport of particle beams through matter, such as the motion of energetic protons
or neutrons through bulk material, can be approached using ideas from the classical kinetic theory of gases.
Kinetic theory is widely used to explain phenomena in such areas as: statistical mechanics, fluids, plasma
physics, biological response to high-energy radiation, high-energy ion transport and various types of radiation
shielding. The problem is basically one of describing the behavior of a system of interacting particles and their
distribution in space, time and energy. The average particle behavior can be described by the Boltzmann

equation which is essentially a continuity equation in a six-dimensional phase space (z,y, z, Vg, V,, V;). We



will be interested in examining how the particles in a volume element of phase space change with time. We

introduce the following notation:

(i) 7 the position vector of a typical particle of phase space and dr = dxdydz the corresponding spatial
volume element at this position.

(ii) V the velocity vector associated with a typical particle of phase space and dr, = dV,dV,dV, the
corresponding velocity volume element.

(iii) € a unit vector in the direction of the velocity V = v.

(iv) E= %mv2 kinetic energy of particle.

(v) dQ is a solid angle about the direction Q and dr dFE df? is a volume element of phase space involving the
solid angle about the direction (.

(vi) n=n(F E, Q, t) the number of particles in phase space per unit volume at position 7 per unit velocity
at position V per unit energy in the solid angle dQ at time ¢t and N = N (7, E,Q,t) = on(7, E,Q,t)
the number of particles per unit volume per unit energy in the solid angle dQ) at time t. The quantity
N(7, E, ﬁ, tydr dE e represents the number of particles in a volume element around the position 7 with
energy between F and E + dE having direction Q) in the solid angle dQ) at time ¢.

(vii) ¢(7, E, 0,t) =N (7, E, G, t) is the particle flux (number of particles/cm? — Mev — sec).

(viii) X(E' — E, ' — Q) a scattering cross-section which represents the fraction of particles with energy E’
and direction € that scatter into the energy range between F and F + dFE having direction Q in the
solid angle s per particle flux.

(ix) X4(E,7) fractional number of particles scattered out of volume element of phase space per unit volume
per flux.

(x) X4 (E,7) fractional number of particles absorbed in a unit volume of phase space per unit volume per
flux.

Consider a particle at time ¢ having a position 7 in phase space as illustrated in the figure 2.5-4. This
particle has a velocity V in a direction @ and has an energy E. In terms of dr = dxdydz, QO and E an
element of volume of phase space can be denoted deEdQ, where df} = dﬁ(@, 1) = sin 0dAdy is a solid angle

about the direction ©.

The Boltzmann transport equation represents the rate of change of particle density in a volume element

dr dE d$ of phase space and is written

%N(F,E,ﬁ,t) dr dEdQ = DeN(7, E, ), t) (2.5.71)

where D¢ is a collision operator representing gains and losses of particles to the volume element of phase
space due to scattering and absorption processes. The gains to the volume element are due to any sources
S(7, E, ﬁ, t) per unit volume of phase space, with units of number of particles/sec per volume of phase space,
together with any scattering of particles into the volume element of phase space. That is particles entering
the volume element of phase space with energy E, which experience a collision, leave with some energy

E — AFE and thus will be lost from our volume element. Particles entering with energies £’ > FE may,
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da$2

Figure 2.5-4. Volume element and solid angle about position 7.

depending upon the cross-sections, exit with energy £/ — AE = FE and thus will contribute a gain to the

volume element. In terms of the flux ¢ the gains due to scattering into the volume element are denoted by
/dﬁ'/dE’z(E' — B, — Q)é(F, E',Q,t) dr dE d)

and represents the particles at position 7 experiencing a scattering collision with a particle of energy E’ and
direction € which causes the particle to end up with energy between F and E + dFE and direction Q in dS.
The summations are over all possible initial energies.
In terms of ¢ the losses are due to those particles leaving the volume element because of scattering and
are
Sy (B, 7)o(7, B, O, t)dr dE dS}.

The particles which are lost due to absorption processes are
So(E,7)¢(F, E, Q,t) dr dE dSQ.

The total change to the number of particles in an element of phase space per unit of time is obtained by

summing all gains and losses. This total change is

% dr dE dQ = /dﬁ’/dE’Z(E’ — B, — Q)¢(F, E',Q,t) dr dE dS)

— 3. (E,7)¢(F, E,Q, t)dr dE dQ
— (B, P)¢(F, E,Q, t) dr dE d$
+ S(7, E,Q, t)dr dE dS}.

(2.5.72)

The rate of change % on the left-hand side of equation (2.5.72) expands to

dN ON ONdr ONdy  ONdz

Aot ordt oyt T osdt
LON Ve  ON 4V, 0N dV.
OV, dt AV, dt ' IV, dt




which can be written as

—

C;—Zj = %—Jj +V.VsN+ % VN (2.5.73)
where % = 5 represents any forces acting upon the particles. The Boltzmann equation can then be
expressed as .

88_227 +V.VeN+ % -V N = Gains — Losses. (2.5.74)

If the right-hand side of the equation (2.5.74) is zero, the equation is known as the Liouville equation. In
the special case where the velocities are constant and do not change with time the above equation (2.5.74)

can be written in terms of the flux ¢ and has the form

[1% + 60 Vi + Du(B,7) + Sa(E,7)| (7, B, G,1) = Ded (2.5.75)

where
Dc¢ = / dsy / dE'S(E' — B, — Q)¢(7, ',V t) + S(7, B, 4, 1),

The above equation represents the Boltzmann transport equation in the case where all the particles are
the same. In the case of atomic collisions of particles one must take into consideration the generation of
secondary particles resulting from the collisions.

Let there be a number of particles of type j in a volume element of phase space. For example j = p
(protons) and j = n (neutrons). We consider steady state conditions and define the quantities

(i) ¢,(7, E, ﬁ) as the flux of the particles of type j.
(ii) Ujk(ﬁ, o , E,E") the collision cross-section representing processes where particles of type k& moving in

direction €' with energy E’ produce a type j particle moving in the direction Q with energy F.

(ili) 0j(E) = X4(E,7) + Xo(E,T) the cross-section for type j particles.

The steady state form of the equation (2.5.64) can then be written as

= Z/Ujk(ﬁ’Q,,EaE/)(ﬁk(F, E’,Q’)dﬁ’dE/ (2.5.76)
k

where the summation is over all particles k # j.

The Boltzmann transport equation can be represented in many different forms. These various forms
are dependent upon the assumptions made during the derivation, the type of particles, and collision cross-
sections. In general the collision cross-sections are dependent upon three components.

(1) FElastic collisions. Here the nucleus is not excited by the collision but energy is transferred by projectile
recoil.

(2) Inelastic collisions. Here some particles are raised to a higher energy state but the excitation energy is
not sufficient to produce any particle emissions due to the collision.

(3) Non-elastic collisions. Here the nucleus is left in an excited state due to the collision processes and
some of its nucleons (protons or neutrons) are ejected. The remaining nucleons interact to form a stable

structure and usually produce a distribution of low energy particles which is isotropic in character.
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Various assumptions can be made concerning the particle flux. The resulting form of Boltzmann’s
equation must be modified to reflect these additional assumptions. As an example, we consider modifications
to Boltzmann’s equation in order to describe the motion of a massive ion moving into a region filled with a
homogeneous material. Here it is assumed that the mean-free path for nuclear collisions is large in comparison
with the mean-free path for ion interaction with electrons. In addition, the following assumptions are made

(i) All collision interactions are non-elastic.
(ii) The secondary particles produced have the same direction as the original particle. This is called the
straight-ahead approximation.
(iii) Secondary particles never have kinetic energies greater than the original projectile that produced them.
(iv) A charged particle will eventually transfer all of its kinetic energy and stop in the media. This stopping

distance is called the range of the projectile. The stopping power S;(E) = % represents the energy

loss per unit length traveled in the media and determines the range by the relation % = ﬁ or
R;(E) = fOE %. Using the above assumptions Wilson, et.al.! show that the steady state linearized
J

Boltzmann equation for homogeneous materials takes on the form

_19
A; OF

— Z/dE’ AV 0,1.(Q,Q E, BN (7, E', Q)
k]

Q- V(7 B, Q) (S;j(E)¢; (7, E,9)) + 0;(E)¢; (F, E, D)

(2.5.77)

where A; is the atomic mass of the ion of type j and ¢; (7, E, Q) is the flux of ions of type j moving in

the direction € with energy F.

Observe that in most cases the left-hand side of the Boltzmann equation represents the time rate of
change of a distribution type function in a phase space while the right-hand side of the Boltzmann equation
represents the time rate of change of this distribution function within a volume element of phase space due

to scattering and absorption collision processes.

Boltzmann Equation for gases

Consider the Boltzmann equation in terms of a particle distribution function f(7, V,t) which can be
written as .
0 = F R .

(a +V . -Ve+ el V‘;> f(FV,t) = Def(F,V,t) (2.5.78)
for a single species of gas particles where there is only scattering and no absorption of the particles. An
element of volume in phase space (z,v, 2z, V;,V,, V) can be thought of as a volume element dr = dzdydz
for the spatial elements together with a volume element dr, = dV,dV,dV, for the velocity elements. These
elements are centered at position 7 and velocity V at time ¢. In phase space a constant velocity V4 can be
thought of as a sphere since V2 = V.2 + Vy2 + V2. The phase space volume element drdr, changes with time

since the position 7 and velocity 1% change with time. The position vector ¥ changes because of velocity

1John W. Wilson, Lawrence W. Townsend, Walter Schimmerling, Govind S. Khandelwal, Ferdous Kahn,
John E. Nealy, Francis A. Cucinotta, Lisa C. Simonsen, Judy L. Shinn, and John W. Norbury, Transport
Methods and Interactions for Space Radiations, NASA Reference Publication 1257, December 1991.
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and the velocity vector changes because of the acceleration g Here f(7,V,t)drdr, represents the expected
number of particles in the phase space element drdr, at time ¢.

Assume there are no collisions, then each of the gas particles in a volume element of phase space centered
at position 7 and velocity Vi move during a time interval dt to a phase space element centered at position
7+ Vidt and Vi + gdt. If there were no loss or gains of particles, then the number of particles must be
conserved and so these gas particles must move smoothly from one element of phase space to another without
any gains or losses of particles. Because of scattering collisions in d7 many of the gas particles move into or
out of the velocity range Vi to Vi + dVi. These collision scattering processes are denoted by the collision
operator D¢ f (T, v, t) in the Boltzmann equation.

Consider two identical gas particles which experience a binary collision. Imagine that particle 1 with
velocity V; collides with particle 2 having velocity V. Denote by o(Vi — V{,Va — VJ)dry,dry, the
conditional probability that particle 1 is scattered from velocity Vi to between ‘71’ and ‘71’ + d‘?l' and the
struck particle 2 is scattered from velocity Va to between ‘7’2’ and ‘72’ + dVQ’. We will be interested in collisions
of the type (V/,Vy) — (Vi, Va) for a fixed value of V; as this would represent the number of particles scattered
into dry,. Also of interest are collisions of the type (Vi,Va) — (V{,Vy) for a fixed value V; as this represents
particles scattered out of dry,. Imagine a gas particle in d7 with velocity ‘7{ subjected to a beam of particles

with velocities Vy. The incident flux on the element drdry; is WV = V| f (7 Vs, t)dry; and hence
o(Vi = V{, Vo — V3) dry, dry,dt |V — V3| f(7, V3, 1) dry; (2.5.79)

represents the number of collisions, in the time interval dt, which scatter from ‘71’ to between V; and V; +dV;
as well as scattering ‘_/'2’ to between ‘_/'2 and ‘72 + dVg. Multiply equation (2.5.79) by the density of particles
in the element drdry; and integrate over all possible initial velocities ‘71’ ,‘_/’2’ and final velocities V5 not equal

to V4. This gives the number of particles in dr which are scattered into dry, dt as
Nsip = deTVIdt/dTVQdTVQ, /dm o(V] — Vi, Vi — Vo) |V} = V3| (7 VI, 6) (7, Vi, ). (2.5.80)
In a similar manner the number of particles in dr which are scattered out of dry, dt is
NSou = drdry, dtf (7, Vl,t)/dﬁ/z /dTVQ, /dm (V! — Vi,V — Vo) |Va — Vi |f(F, Va, t). (2.5.81)

Let
WV = Vi,V = Va) = [Vi = Vol o (V] — Vi, V] — Th) (2.5.82)

define a symmetric scattering kernel and use the relation D¢ f (F,V,t) = Ns;jn — NSour to represent the

Boltzmann equation for gas particles in the form

9 | o F .
— 4V -Va+— V5 7, Vi,t) =
(BtJr er V>f(r 1,1)

(2.5.83)
/ dry; / dry; / dry, W (Vi = Vi, Vo — V3) [F(F, VI, 0 (7, V3, 1) = F(F, Vi, ) f (7, Va, 1)) -

Take the moment of the Boltzmann equation (2.5.83) with respect to an arbitrary function ¢(V;). That
is, multiply equation (2.5.83) by ¢(17'1) and then integrate over all elements of velocity space dry,. Define

the following averages and terminology:
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e The particle density per unit volume

n=n(Ft) = /dva ///f t)dV,dV,dV, (2.5.84)

where p = nm is the mass density.

e The mean velocity

= N 1 . -
VoV — E// Vi f (7, Vo, )dVigdViy Vi

For any quantity Q = Q(Vl) define the barred quantity

Q=Q(71t) = ; /QV fFV t)dry = ///Q t)dV,dV,dV.. (2.5.85)

Further, assume that g is independent of ‘7, then the moment of equation (2.5.83) produces the result

F, 06
m 8Vh

2 g+ > 2

i=1

(2.5.86)

known as the Maxwell transfer equation. The first term in equation (2.5.86) follows from the integrals

/8f(m71,t)

; P L o _
oy, = o [ 16T 06() dry = 2 n9) (25.87)

where differentiation and integration have been interchanged. The second term in equation (2.5.86) follows

from the integral

. . 3 of
/ ViV b(V)dry, = / ;VM%MT\A

3
- J?i (/ Vu‘(ﬁdevl) (2588)

(nV1:9) -

(3

I
1 Mw

8x1

The third term in equation (2.5.86) is obtained from the following integral where integration by parts is

/ Vi, fodry, = /Z (fn;f )qbdrvl
///Zd) <§1 a%;) Wity (2.5.89)

0 F;
_ /am( as)fdm

_ a2 (B - F 94
~"on T T movy

employed




since F; does not depend upon Vi and f (7, V,t) equals zero for V; equal to +o0o. The right-hand side of
equation (2.5.86) represents the integral of (D¢ f)¢ over velocity space. This integral is zero because of
the symmetries associated with the right-hand side of equation (2.5.83). Physically, the integral of (D.f)¢
over velocity space must be zero since collisions with only scattering terms cannot increase or decrease the
number of particles per cubic centimeter in any element of phase space.

In equation (2.5.86) we write the velocities V3; in terms of the mean velocities (u,v,w) and random

velocities (U, V,., W,.) with

Vi1 =U, +u, Vie =V, + v, Vis=W,+w (2590)

or Vi = Vo +V with Vi = V,+V = V since V, = 0 (i.e. the average random velocity is zero.) For
future reference we write equation (2.5.86) in terms of these random velocities and the material derivative.

Substitution of the velocities from equation (2.5.90) in equation (2.5.86) gives

d(ng) 0 [—— 0 ([ 0 [ i F, 0¢
5 + I (n(Ur + u)gb) + oy (n(Vr + v)gb) + % (n(Wr +w) ) — nz v (2.5.91)
. o(ng) 0 0 0
Oy (wd) + 5 (78) + 5 (niD)
Lo 9 ) P a (2.5.92)
5 (1U:6) + 3 5. (1V20) + - (nW,6) — Z B
Observe that
nug = ///u¢f t)dV,dV,dV, = nug¢ (2.5.93)

and similarly nvé = nvé, nweo = nwe. This enables the equation (2.5.92) to be written in the form

b ol ol D9
_[To 0 0 0
9 ) K F; 0¢
+ 55 (0079) + 5 (nV70) + 5 (nT770) - 2} mavy

The middle bracketed sum in equation (2.5.94) is recognized as the continuity equation when multiplied by

m and hence is zero. The moment equation (2.5.86) now has the form

D¢ 0 F; 06
— + — (nU, — (nV, W — . 2.5.95
"Di + g U:9) + 5, (nV0) + 5 (1 29) "Zmavh (2:5.95)

Note that from the equations (2.5.86) or (2.5.95) one can derive the basic equations of fluid flow from
continuum mechanics developed earlier. We consider the following special cases of the Maxwell transfer

equation.
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(i)

(i)

(iid)

In the special case ¢ = m the equation (2.5.86) reduces to the continuity equation for fluids. That is,

equation (2.5.86) becomes

% (nm) + V - (nmVy) = 0 (2.5.96)
which is the continuity equation 5
a_i +V-(pV) =0 (2.5.97)

where p is the mass density and V is the mean velocity defined earlier.
In the special case ¢ = mV; is momentum, the equation (2.5.86) reduces to the momentum equation

for fluids. To show this, we write equation (2.5.86) in terms of the dyadic ViVi in the form

0 = == -
— (an1> + V- (nmWViVi)—nF =0 (2.5.98)
ot
or
9/ - . Lo L .
o (p(Vr + 7)) + V- (pVs + V)V, + V) = nF =00 (2.5.99)
Let O = —pV;V; denote a stress tensor which is due to the random motions of the gas particles and

write equation (2.5.99) in the form

—

p%_‘;Jrv%J”’V(V'V)JFV(V'(PV)) ~V.0 —nF =0 (2.5.100)
The term V (% +V- (9‘7)) = 0 because of the continuity equation and so equation (2.5.100) reduces

to the momentum equation

vV o .
p(E—FVV-V) —nF+V-0. (2.5.101)
For F = qﬁ + qV x B + mI;7 where ¢ is charge, E and B are electric and magnetic fields, and bisa

body force per unit mass, together with

(=pdij + Tij)€i€; (2.5.102)

3 3
=1

o=y
i=1j

the equation (2.5.101) becomes the momentum equation

DV

pD—t:pg—Vp+V-T+nq(E+Vx§). (2.5.103)

In the special case were E and B vanish, the equation (2.5.103) reduces to the previous momentum
equation (2.5.25) .

In the special case ¢ = %‘71 V= 2 (VA + V5 + Vi%) is the particle kinetic energy, the equation (2.5.86)
simplifies to the energy equation of fluid mechanics. To show this we substitute ¢ into equation (2.5.95)

and simplify. Note that

¢
b=

SMEE

(@ w? + Ve + 0P + (W, + w)
S (2.5.104)
[UE+WQ+WE+U2+v2+w2}



since uU, = vV, = wW, = 0. Let V? = u? + v? + w? and C2 = U2 + V;2 + W2 and write equation
(2.5.104) in the form
5 =

m
2

(C2+v2). (2.5.105)

Also note that

006 =20 (00w + UnlV, 0 + T, (W, + w)?)
e
= | = U2 + UV + wl W, (2.5.106)
and that
Vv _nm 2 12 VI
nVib =" [VeCZ + uViTy + o2 + w7, | (2.5.107)
W, o Z% [WTCS + U, T, + oW, V, +wW} (2.5.108)

are similar results.
We use % (¢) = mVy; together with the previous results substituted into the equation (2.5.95), and

find that the Maxwell transport equation can be expressed in the form

D CQ V2 9
Z |y 2 2 UV, T
th<2 2) 8x(p[UUT vtV W T])

- 8% (P[UW'F vV2 + wm])

; (2.5.109)
_ = W.U. WV, T2

— (p[uWTUT oWV, + WiV ])
o (UCEY 0 [ V:C2Y 0 [ W.CZ A nF T

or \P 2 Oy P9 9: \""2 '

Compare the equation (2.5.109) with the energy equation (2.5.48)

D D [V? - - o

pD—(z+pD—t <7> =V(O - V)=V-G+pb-V (2.5.110)

where the internal heat energy has been set equal to zero. Let e = (’;’2' denote the internal energy due to

random motion of the gas particles, F= ml_;, and let

v.og._9 u,cz\ o [ V,ez\ 9 [ W.CE
q_apr 8yp2 5‘zp2
(2.5.111)
__ 90 (9T _ 0 (o _9 (0T
ox \ Ox oy \' Oy 0z \ 0z
mC2

represent the heat conduction terms due to the transport of particle energy —5= by way of the random

particle motion. The remaining terms are related to the rate of change of work and surface stresses giving
9 (p[uUr 40U, V, + wUrW,«]) =% (UOzg + VOgy + WO)
0 —_— = 0
~ (p[uVrU,« +oV2+ wV,«W,«]) =y (uoys + voyy + woy,) (2.5.112)

0 _ )
~ (p[uWrUT + oW, \V,. + wWTQ]) =3, (UO 2z + VO 4y + WO s) .
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This gives the stress relations due to random particle motion

Ozx = — pU_E Oyz = — p‘/;“UT Oza = — pWTU”
O—Iy = — pUr‘/;, O'yy = — pV_TQ UZy = — pWT‘/’F (2.5.113)
Ogpy = — pUrWr Oyz = — p‘/TWT Ozz = — pWrQ

The Boltzmann equation is a basic macroscopic model used for the study of individual particle motion
where one takes into account the distribution of particles in both space, time and energy. The Boltzmann
equation for gases assumes only binary collisions as three-body or multi-body collisions are assumed to
rarely occur. Another assumption used in the development of the Boltzmann equation is that the actual
time of collision is thought to be small in comparison with the time between collisions. The basic problem
associated with the Boltzmann equation is to find a velocity distribution, subject to either boundary and/or
initial conditions, which describes a given gas flow.

The continuum equations involve trying to obtain the macroscopic variables of density, mean velocity,
stress, temperature and pressure which occur in the basic equations of continuum mechanics considered
earlier. Note that the moments of the Boltzmann equation, derived for gases, also produced these same
continuum equations and so they are valid for gases as well as liquids.

In certain situations one can assume that the gases approximate a Maxwellian distribution

F(7 V1) ~ n(7,t) (Q:ZT)B/Q exp (—2%17‘ : V) (2.5.114)

thereby enabling the calculation of the pressure tensor and temperature from statistical considerations.

In general, one can say that the Boltzmann integral-differential equation and the Maxwell transfer
equation are two important formulations in the kinetic theory of gases. The Maxwell transfer equation
depends upon some gas-particle property ¢ which is assumed to be a function of the gas-particle velocity.
The Boltzmann equation depends upon a gas-particle velocity distribution function f which depends upon
position 7, velocity V and time t. These formulations represent two distinct and important viewpoints

considered in the kinetic theory of gases.



EXERCISE 2.5

> 1. Let p = p(x,y,2), [dyne/cm?] denote the pressure at a point (z,vy,2) in a fluid medium at rest
(hydrostatics), and let AV denote an element of fluid volume situated at this point as illustrated in the
figure 2.5-5.

B F

P '
oy o [ =foeany.

D H

Figure 2.5-5. Pressure acting on a volume element.

(a) Show that the force acting on the face ABCD is p(z,y, 2) AyAz é;.
(b) Show that the force acting on the face EFGH is

2 2
%Aa: + 9 (Az)

—p(z+ Az, y, 2)AyAzéy = — |p(z,y, 2) + o or2 2

+ | AyAzé;.

(c) In part (b) neglect terms with powers of Az greater than or equal to 2 and show that the resultant force
in the z-direction is —a—prAyAz é1.
x

(d) What has been done in the z-direction can also be done in the y and z-directions. Show that the

0 0
resultant forces in these directions are —a—zAxAyAz éo and — a—IZ)AxAyAz és. (e) Show that —Vp =
0 0 0
— (8_5 é1 + 8_5 €y + a—f ég) is the force per unit volume acting at the point (x,y, z) of the fluid medium.

» 2. Follow the example of exercise 1 above but use cylindrical coordinates and find the force per unit volume

at a point (r,0, z). Hint: An element of volume in cylindrical coordinates is given by AV = rArA6Az.

» 3. Follow the example of exercise 1 above but use spherical coordinates and find the force per unit volume

at a point (p, 0, ¢). Hint: An element of volume in spherical coordinates is AV = p? sin §ApAGA¢.

» 4. Show that if the density ¢ = o(w,y, z,1) is a constant, then v", = 0.

» 5. Assume that A\* and p* are zero. Such a fluid is called a nonviscous or perfect fluid. (a) Show the

Cartesian equations describing conservation of linear momentum are

ou ou ou ou 10p
E+u%+va—y+w& =by — oor
ov v v ov 190p
E—l—u%—l—va—y—l—w& =b, — 2y
ow ow ow ow 190p

T R TR i

where (u,v,w) are the physical components of the fluid velocity. (b) Show that the continuity equation can

be written 5 5 5 5
0 _
T (ou) + 2y (ov) + P (ow) =0
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» 6. Assume A\* = p* = 0 so that the fluid is ideal or nonviscous. Use the results given in problem 5 and
make the following additional assumptions:
e The density is constant and so the fluid is incompressible.
e The body forces are zero.
e Steady state flow exists.
e Only two dimensional flow in the a-yplane is considered such that v = u(zx,y), v = v(z,y) and
w = 0. (a) Employ the above assumptions and simplify the equations in problem 5 and verify the

results

ou ou 10p

U%'F’Ua—y"-gazo
v ov 10p
u%—f—va—y—kga—ny
@4_@—0
oxr Oy

(b) Make the additional assumption that the flow is irrotational and show that this assumption

produces the results

ov Ou

_— - — (u2 + v2) + l10 = constant
ox Oy 0 ’

N =

(c) Point out the Cauchy-Riemann equations and Bernoulli’s equation in the above set of equations.

» 7. Assume the body forces are derivable from a potential function ¢ such that b; = —¢ ;. Show that for an

ideal fluid with constant density the equations of fluid motion can be written in either of the forms

ov” 1 ov,.

1
ot + UTS’US = _Egrmp,m - grm¢,m or W + 'Ur,svs = _Ep,r - ¢,r

1
» 8. The vector identities V?9 = V (V- 7) —V x (Vx @) and (7-V)¥7= EV(U- ¥) — U x (V x ¥) are
used to express the Navier-Stokes-Duhem equations in alternate forms involving the vorticity 2 = V x v.

(a) Use Cartesian tensor notation and derive the above identities. (b) Show the second identity can be written
2

g ov
k em”pe”kgpivnvkﬁj. Hint: Show that Ere i 2vkvk,j.

in generalized coordinates as v/v"} = g™/ v vy, j —

» 9. Use problem 8 and show that the results in problem 7 can be written

o' o (p v?
_ Qv ——gm—_ (£ —
a ¢ pin I g 0 o+ 2

ov; ok o (p v?
NS Fo Y. A I 4 il
o ar kv ozt \ o o+ 2

» 10. In terms of physical components, show that in generalized orthogonal coordinates, for ¢ # j, the rate

of deformation tensor D;; can be written D(ij) = % [Z—;a;zj (U}gz)) + Z—z% (%)} , no summations
1 i 1 i
and for i = j there results D(ii) = —— 81}(1{) v(i) 8h. EZl hihkv(k)%,

no summations. (Hint: See

Problem 17 Exercise 2.1.)
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Figure 2.5-6. Plane Couette flow

» 11. Find the physical components of the rate of deformation tensor D;; in Cartesian coordinates. (Hint:

See problem 10.)

» 12. Find the physical components of the rate of deformation tensor in cylindrical coordinates. (Hint: See

problem 10.)

» 13. (Plane Couette flow) Assume a viscous fluid with constant density is between two plates as illustrated
in the figure 2.5-6.

(a) Define v = % as the kinematic viscosity and show the equations of fluid motion can be written

avi i ,,8 1 im jm, i i -
+v'5v :—Eg pom +rg’"0, + g7, 1=1,2,3

ot

(b) Let ¥ = (u, v, w) denote the physical components of the fluid flow and make the following assumptions

u=u(y),v=w=0

Steady state flow exists

The top plate, with area A, is a distance £ above the bottom plate. The bottom plate is fixed and
a constant force F' is applied to the top plate to keep it moving with a velocity ug = u(¥).

e p and g are constants

e The body force components are zero.

Find the velocity u = u(y)

(c) Show the tangential stress exerted by the moving fluid is 7 =02 = Oay = Oy = u*%. This

example illustrates that the stress is proportional to ug and inversely proportional to £.
» 14. In the continuity equation make the change of variables

_ z
) ==

L

v _ r
= —, ]/‘:—7 y:

L

SN

-t _ 0
t:_7 0= —
T 00 (¥

S
=

and write the continuity equation in terms of the barred variables and the Strouhal parameter.

» 15. (Plane Poiseuille flow) Consider two flat plates parallel to one another as illustrated in the figure
2.5-7. One plate is at y = 0 and the other plate is at y = 2¢. Let ¥ = (u, v, w) denote the physical components

of the fluid velocity and make the following assumptions concerning the flow The body forces are zero. The

0 0
derivative 2L = —pp is a constant and 9 _ % _ . The velocity in the x-direction is a function of y only

ox dy P
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» 16. The heat equation (or diffusion equation) can be expressed div (kgradu)+H =

y=2¢

u=u(y)

y=0
Figure 2.5-7. Plane Poiseuille flow

with v = u(y) and v = w = 0 with boundary values u(0) = u(2¢) = 0. The density is constant and v = p*/p

is the kinematic viscosity.
d2
(a) Show the equation of fluid motion is Vd—yg + % =0, u(0) =u(2¢) =0
(b) Find the velocity v = u(y) and find the maximum velocity in the z-direction. (¢) Let M denote the

mass flow rate across the plane x = xg = constant, , where 0 <y <2/, and 0 < z < 1.

2
Show that M = ;gpoﬁ?’. Note that as p* increases, M decreases.

I
a(o
ﬂ, where c is the

specific heat [cal/gm C], § is the volume density [gm/cm?®], H is the rate of heat generation [cal/sec cm?]

) U
is the temperature [C], k is the thermal conductivity [cal/seccm C]. Assume constant thermal conductivity,

volume density and specific heat and express the boundary value problem

9%u ou
k— = dc— L
Ox C@t’ O<z<

U(O,t) =0, U(L,t) = Uz, u(x, O) = f(x)

in a form where all the variables are dimensionless. Assume w7 is constant.

» 17. Simplify the Navier-Stokes-Duhem equations using the assumption that there is incompressible flow.

» 18. (Rayleigh impulsive flow) The figure 2.5-8 illustrates fluid motion in the plane where y > 0 above a

plate located along the axis where y = 0. The plate along y = 0 has zero velocity for all negative time and
at time ¢ = 0 the plate is given an instantaneous velocity ug in the positive z-direction. Assume the physical
components of the velocity are ¥ = (u, v, w) which satisfy u = u(y,t), v = w = 0. Assume that the density
of the fluid is constant, the gradient of the pressure is zero, and the body forces are zero. (a) Show that the

velocity in the z-direction is governed by the differential equation

ou 0%u *

— =V, with v= 'u—.

ot oy? 0
Assume u satisfies the initial condition w(0,t) = ugH (t) where H is the Heaviside step function. Also assume
there exist a condition at infinity lim, . u(y,t). This latter condition requires a bounded velocity at infinity.

(b) Use any method to show the velocity is

u(y,t)zuo—uoerf( Y ):uoerfc( y )
2V/vt 2V/vt
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Figure 2.5-8. Rayleigh impulsive flow

where erf and erfc are the error function and complimentary error function respectively. Pick a point on the
line y = yg = 21/v and plot the velocity as a function of time. How does the viscosity effect the velocity of

the fluid along the line y = yo?

» 19. Simplify the Navier-Stokes-Duhem equations using the assumption that there is incompressible and

irrotational flow.

» 20. Let ( =M+ %,u* and show the constitutive equations (2.5.21) for fluid motion can be written in the

form

> 21. (a) Write out the Navier-Stokes-Duhem equation for two dimensional flow in the z-y direction under
the assumptions that
e M+ 24 =0 (This condition is referred to as Stoke’s flow.)
e The fluid is incompressible
e There is a gravitational force b = —gV h Hint: Express your answer as two scalar equations
involving the variables v, v, h, g, 0, p, t, u* plus the continuity equation. (b) In part (a) eliminate
the pressure and body force terms by cross differentiation and subtraction. (i.e. take the derivative

of one equation with respect to x and take the derivative of the other equation with respect to y

1 [ 0v Ov
and then eliminate any common terms.) (c) Assume that & = w é3 where w = = (—2 - —1) and

2\ Ox dy

derive the vorticity-transport equation

dw V2 b dw  Ow L Ow L Ow
— =vVw where — = — 41— +vo—.
dt dt ot " lox " oy
Hint: The continuity equation makes certain terms zero. (d) Define a stream function ¢ = 1 (z, y)
satisfying vy = 5‘_w and vy = _8_w and show the continuity equation is identically satisfied.
Yy x

Show also that w = —%V%ZJ and that

OV n o oV o oV

1
4, _ L _
Vd)fy ot Oy Ox Ox Oy

If v is very large, show that V4 ~ 0.
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» 22. In generalized orthogonal coordinates, show that the physical components of the rate of deformation

stress can be written, for i # j

W hi O [0(i) hj 0 [(v(j) )
o(ij) = p [hj O ( I ) + he 920 ( _ , ho summation,

and for i # j # k

o(ii) = —p + 2u* {

Lo
hihohs

1ovG) 1 oh 1 ok
h oxt T hen " Waw hihkv(k)éxk]

0 0 0 :
{@{hgh;ﬂ)(l)} + @{hlhgv(2)} + ﬁ{hlhgv(i’))}} , ho summation

» 23. Find the physical components for the rate of deformation stress in Cartesian coordinates. Hint: See

problem 22.

» 24. Find the physical components for the rate of deformations stress in cylindrical coordinates. Hint: See

problem 22.

1
» 25. Verify the Navier-Stokes equations for an incompressible fluid can be written 9; = —=p ; + vV; mm +b;
0

where v = % is called the kinematic viscosity.

» 26. Verify the Navier-Stokes equations for a compressible fluid with zero bulk viscosity can be written

1 v -
Vi =——pi+ gvm,mi + VUi mm + b; With v = ”? the kinematic viscosity.
0
» 27. The constitutive equation for a certain non-Newtonian Stokesian fluid is 035 = —pds; +8D;;+vDir Dy;.

Assume that § and v are constants (a) Verify that o;; ; = —p.; + 8D;j,; + V(DixDyj,; + Dik,j D)

(b) Write out the Cauchy equations of motion in Cartesian coordinates. (See page 236).

» 28. Let the constitutive equations relating stress and strain for a solid material take into account thermal
1+v v
Tdij — Eakk 5ij+aT5ij

where « is a coefficient of linear expansion for the material and T is the absolute temperature. Solve for the

stresses due to a temperature T'. The constitutive equations have the form e;; =

stress in terms of strains.

» 29. Derive equation (2.5.53) and then show that when the bulk coefficient of viscosity is zero, the Navier-

Stokes equations, in Cartesian coordinates, can be written in the conservation form

d(ou) N I(ou? +p — Tuz) N (ouv — Tpy) N d(ouw — 74)

ot ox oy 0z °
I(ov)  Oouwv — Tpy)  O(0V* +p—Tyy)  Oovw — Ty2)
= ob
ot + ox + Oy + 0z ey
I(ow) = Oouw —7z.)  O(ovw — 1)  O(ow? +p — T2z)
ot + ox + Ay + 0z ¢
" 2 . . .
where v1 = u,v2 = v,v3 = w and 7;; = p* (v, ; + v, — géijvk,k). Hint: Alternatively, consider 2.5.29 and use

the continuity equation.



» 30. Show that for a perfect gas, where \* =

—%u* and n = p* is a function of position, the vector form

of equation (2.5.25) is

Dv - 4
QF: =0b—Vp+ §V(nV-17) +V(T-Vn) =TV 4 (Vn) x (V x0) = (V-5)Vn -V x (V x (nv))
Dh D 0
» 31. Derive the energy equation o—— D = _p + a—cf — V- g+ . Hint: Use the continuity equation.

> 32.

can be written

Du
"Dt
Dv
"Dt
Dv
"Dt

where (V,,V,, V,) =

Show that in Cartesian coordinates the Navier-Stokes equations of motion for a compressible fluid

B dp 0 L O0u e o K du v o ow  Ou
b=t 3_(2“ ax“vv>+a (“(ay 8x)>+8 (“(ax 82))
B dp 0 L Ov . — 2 ov  Ow 9 ow | Ow
=Pby Oy +8 <2M 8y+)\v V) 0z (ﬂ( +8y))+8m (u((‘)y—’_(‘)m))
B 8p 0 LOow . 2 ow = Ju 0 ([, 0v Ouw
T s 8 <2M 0z AV V> ox (M (833 8z)>+8y <M (82: 8y)>

(u, v, w).

» 33. Show that in cylindrical coordinates the Navier-Stokes equations of motion for a compressible fluid

can be written

DV,
e\ Dt

VT‘)Q) —ob, — ? + ag (2/1*88‘? * ~17') + l% <u*(%aa‘g + % - %))
R () 108,

) 000 (48 e ) (05 2
AT R

e B ) e )

r 90 r 00 0z

» 34. Show that the dissipation function ® can be written as ® = 2u*D;;D;; + \*©2,

» 35. Verify the identities:

(a) ( t/0) =

LV @l) B o (o) = o +op: (V2/2).

» 36. Show that the conservation law for heat flow is given by

T
oy

8t (Tﬁ— KVT) = SQ

where £ is the thermal conductivity of the material, T' is the temperature, j(;dvection =T,

=

Jconduction =

—xVT and Sg is a source term. Note that in a solid material there is no flow and so ¥ = 0 and
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the above equation reduces to the heat equation. Assign units of measurements to each term in the above
equation and make sure the equation is dimensionally homogeneous.

» 37. Show that in spherical coordinates the Navier-Stokes equations of motion for a compressible fluid can

be written
(DV L+VQ)— b 3p+2 2 *%+>\*V.X7‘ +l2 *( i(v/ )+18_V)
D P — % dp  Op ap p 00 a p(‘)p 6/p 00
1 9 ., 1 oV, 0
+ psin98_¢ (N (p51n9 0¢ +p8 (V¢/p))>
WV 20V AV, 2 OVy Wecotd 0 cotd v,
+ p( dp p 00 P psin® O¢ P +pCOt98p(V9/p) P 89)
DVy  V,Vp Vicotf 1dp 10 (24" 3V, o O
Q(Dt-l- 5 ; ) = obg — 506 " 500 (89 +V,)+ XV V
1 0 sinf 0 1 0V 0 0 10V,
+ g (0B g W/ sind) + S ) 2 (o (Vo) + 5 500

1w lﬁ_L%_VOCOW 9 19V,
+ P [2 (p 00  psinf 0¢ P Ut p@p (Ve/p)-i-p 00

DV, V4V, V9V¢C0t9 1 o0p 0 * 1 9V, 8
Q( Dt + P + = 0by — p81n98¢+8p psin @ 8¢ TP (V¢/p)

1

1 8V¢ * e
(sm9 90 +V, +V9C0t9)+)\ V-V)

psm9 (
1 0V
+;@ ( V¢/sm )+ sin98—¢)>
i (1 fW 2 sing 0 Lo,
+ ; [3 (psm@ 90 (V¢/p) + 2cot 6 0 (Vp/sin6) + s d 99

» 38. Verify all the equations (2.5.28).

> 39. Use the conservation of energy equation (2.5.47) together with the momentum equation (2.5.25) to
derive the equation (2.5.48).

» 40. Verify the equation (2.5.55).

» 41. Consider nonviscous flow and write the 3 linear momentum equations and the continuity equation
and make the following assumptions: (i) The density g is constant. (ii) Body forces are zero. (iii) Steady
state flow only. (iv) Consider only two dimensional flow with non-zero velocity components u = u(z,y) and

v =v(x,y). Show that there results the system of equations

@—Fv@—f—la—P—O u@—f—v@—klap 0 %—i—@
oz oy o0dxr Ox Oy o Oy ’ oxr Oy

Recognize that the last equation in the above set as one of the Cauchy-Riemann equations that f(z) = u—iv

u =0.

be an analytic function of a complex variable. Further assume that the fluid flow is irrotational so that

0 0 1 P

5‘_U — a—u = 0. Show that this implies that — (u + v ) + — = Constant. If in addition u and v are derivable
€ Y o

from a potential function ¢(z,y), such that u = g—m and v = g—i, then show that ¢ is a harmonic function.

By constructing the conjugate harmonic function ¥ (x,y) the complex potential F(z) = ¢(z,y) + iy(z,y) is
such that F'(z) = u(x,y) — iv(z,y) and F’(z) gives the velocity. The family of curves ¢(z,y) =constant are
called equipotential curves and the family of curves ¢(z,y) = constant are called streamlines. Show that

these families are an orthogonal family of curves.



